
OpenJCS - Unix Batch Job System Proposal

Version 0.1.8

By

Carl W. Kemp III

As of 26-Aug-08

 2

 3

Contents

OPENJCS - UNIX BATCH JOB SYSTEM PROPOSAL... 1

CONTENTS .. 3

OVERVIEW.. 6

SCHEDULING FEATURES ... 6

CONCEPTUAL BASICS ... 7

BATCH JOBS AND EVENTS.. 7
DEPENDENCIES... 7

Time and Date Scheduling .. 7
Logical Dependencies... 8
Manual Confirmation.. 9
File Dependencies... 9
Job Dependencies ... 9
Job Concurrency... 9
Resource Dependencies .. 9
Other Dependencies.. 9

BATCH ENVIRONMENT DEFINITIONS .. 11
Job... 11
Serial Queue ... 11
Jobqueue ... 11
Job Number Family .. 11
Job State.. 11
Job Runbooks.. 12
Preprocessors ... 12

RESOURCES .. 13
JCS VARIABLES ... 13
REGIONS ... 14
VIRTUAL HOSTS ... 14
ASK/REPLY FACILITY .. 14
RULESETS ... 14
OBJECT SCOPE ... 15

ARCHITECTURAL FUNDAMENTALS .. 17

SYSTEM LEVEL COMPONENTS .. 18

� DBMS ... 18
� APACHE .. 18
� C++ ... 18
� PYTHON AND ZOPE... 18
� JAVA ... 18
� PHP .. 18
� SSH .. 18

SYSTEM OBJECT DEFINITIONS.. 18

SYSTEM MASTER ELECTION AND FAILOVER .. 19

NOTES... 19

COMMANDS.. 20

 4

ANSWER .. 20
ASK.. 20
AUTOREPLY .. 20
CALENDAR .. 20
DATECALC .. 21
DURATION ... 21
FINFO .. 21
JCSALLOW .. 21
JCSCONFIG .. 22
JCSMASTER ... 22
JOB .. 23
JOBINFO .. 24
JOBNUM .. 24
JOBNUMINFO... 24
JOBNUMS... 24
JOBPERMS ... 25
JOBQ.. 26
JOBQINFO.. 27
PAUSE .. 27
PREPROCESS ... 27
RECALL ... 27
RECAP ... 27
REGION ... 27
REPLY ... 27
REPLYINFO.. 28
RESINFO .. 28
RESOURCE... 28
RESUSER.. 29
RULE ... 29
SCHEDULE... 30
SCOPE.. 30
SHOWSCHED ... 31
STDLIST... 31
VARIABLE ... 31
VIRTUAL.. 32

Virtual Host States .. 33
Member Host States .. 33

VSH.. 33

OPENJCS.CONF FILE.. 34

JOB RUNBOOKS... 38

INTRODUCTION... 38
PARTS OF RUNBOOK FILE.. 38

User Alias ... 38
Job Alias ... 38
Concurrency Alias .. 39
Scheduling Alias ... 39
Calendar Alias .. 40
Directory Alias.. 40
File Alias... 40
Source Alias .. 40
Target Alias... 40
Login Alias.. 41
Logical Alias ... 41
Selectors.. 42

 5

Introduction..42
Conclusion ...42

Launch Rules... 43

JCS - JCSH.. 44

COMMANDS .. 44
:autocont ... 44
:alias ... 44
:cierror.. 44
:continue ... 44
:eoj .. 44
:goto.. 44
:jobcard... 44
:label ... 44
:try... 45
:endtry... 45

BASE PREPROCESSOR EXPRESSIONS .. 46

CHR ... 46
DATE ... 46
DO ... 46
FOR.. 46
IF ... 46
ELSE .. 46
FI ... 46
INCLUDE.. 46
MY ... 46
WHILE ... 46

SCHEDULE MODIFIERS .. 47

JOB MODIFIERS... 50

LIBRARY ROUTINES .. 53

JOBINFO ... 53
JOBNUM ... 55
JOBQINFO ... 56
REPLYINFO... 57
RESINFO ... 58
RESUSER .. 58
GETVAR ... 58
SETVAR .. 58
FINFO ... 58
DURATION.. 59
IDURATION... 59

 6

Overview

The purpose of this document is to define a state-of-the-art batch scheduling system for
use on Unix systems called OpenJCS (Job Control System). Through the intelligent use
of load balancing, dependency control, scheduling, runbooks, queueing and resource
allocation subsystems, the objective is to create a thoroughly integrated system of
unmatched scheduling flexibility that still gives good visibility into system usage, while
providing scalability and ease of use wherever possible.

Scheduling Features

OpenJCS has the features you have come to expect in enterprise class schedulers, such
as:

� Full dependency control between jobs and across job groups.
� Calendar scheduling, including repetitive interval, and custom calendars.
� Job queueing.
� Resource control and allocation.
� Ad hoc job scheduling and control.
� Job monitoring and completion verification.
� Automatic schedule recovery and restart in event of scheduling system shutdown.
� Custom notifications for failed jobs.

But OpenJCS also provides some features you might not expect in a commercial
scheduler, much less an Open Source scheduler:

� The ability to aggregate hosts in ways that make sense to you.
� The ability to see why a job is on hold, not just the fact that it is on hold.
� The ability to share special OpenJCS variables between jobs, or even between

systems.
� The ability to look into a job as it executes.
� An API for hooking your programs into OpenJCS.
� The ability to integrate new dependencies and commands into OpenJCS.
� Virtual Host definition so you can cluster hosts that share a given workload.
� The ability to prompt for runtime parameters for jobs.
� Security that lets you specify who can run what, when it can run, and under whose

ID it can run.
� Job Runbooks that allow greater control over how jobs run, and how to verify if

they ran correctly.
� Job Runtime Analysis.
� Transparent dependency control across and between disparate systems, and the

ability to synchronize jobs across and between these systems.
� Job Interrupts, Resumption, and Restart.
� Specification of special pre-processors for jobs.
� Transparent transfer of job files to target hosts.

 7

Conceptual Basics

Batch Jobs and Events

OpenJCS is at its heart an event scheduler. So, what is an event in OpenJCS? An event
can be any of the following:

� A single command.
� A file of commands to be executed.
� A batch job.
� Another dependency or schedule.
� A file containing any combination of the above.

A batch job is a set of commands that are executed as a unit in OpenJCS’ own batch
control system. The commands can be read from a file, or submitted a line at a time from
the user’s standard input. The commands usually execute under the same user name as
the user who submitted the job, but if the user is given sufficient permission, the job can
be executed as another user as well. Once the job is successfully submitted, the user will
be given a Job Number that can be used to track the status of the job when it begins to
execute. From that point forward, the job is completely separate from the user’s process
tree, and executes under the control and supervision of OpenJCS.

Dependencies

In OpenJCS, a dependency is anything that puts a condition on when an event can or
cannot execute. For example, you might not want a job on server A to execute until
another job on machine B has successfully finished. The batch control system contains a
large variety of dependencies that the user may use in scheduling. Some of the
dependencies available are: time and date scheduling (including drop dead date and
repetitive interval scheduling), job dependency scheduling, scheduling by arbitrary
logical expression, manual operation confirmation, file dependencies, resource
dependencies, and job concurrency dependencies. These dependencies can be mixed and
matched as desired.

Time and Date Scheduling – The ability to schedule events according to time and date
dependencies is the most basic requirement for any scheduler. At the very least, a
scheduler should be able to schedule by time of day, day of week, day of month, month
of year, week of month, and any combination of these. OpenJCS can schedule according
to all of these, plus other date combinations, such as: week of year, week of quarter, days
before end of month, days, weeks or months until or since another date.

 8

But OpenJCS can do more than just these. It also lets you define your own date patterns
for things like business day calendars and fiscal calendars. This way, you can tailor your
scheduling according to your calendars. OpenJCS even lets you define your own
calendars and temporal units so that you can make your calendars as flexible as you want.

Logical Dependencies – OpenJCS allows you to schedule an event for when a condition
becomes true, for whenever a condition becomes true, repeat the event while the
condition is true, or repeat the event until a condition becomes true. So what makes up a
logical condition? A logical condition results from the logical comparison between two
items chosen from the following:

� A constant or literal.
� An environment variable.
� A special JCS variable (see the JCS Variable section or the variable command for

further information.
� A piece of information about a current job as returned by jobinfo. (See library

routine jobinfo)
� A piece of information about a file as returned by finfo. (See library routine finfo)
� A piece of information about a pending reply as returned by replyinfo. (See

library routine replyinfo)
� A piece of information about a jobqueue as returned by jobqinfo. (See library

routine jobqinfo)
� A piece of information about a resource as returned by resinfo. (See library

routine resinfo)
� A piece of information from an SNMP MIB.
� The output of a programatically executable command.

Logical conditions can also be compounded by the use of AND and or, and can be
negated with NOT. Perhaps a few examples will make this clearer.

Example 1: job –launch –file myfile –when finfo datafile,eof > 0 AND jobinfo joba,state
= “FINISHED”

This will launch the job file myfile when the file datafile exists and is nonempty, and job
joba has finished.

Example 2: schedule –whenever \`ps –eafl|grep sshd|wc –l\` < 1 –cmd /etc/init.d/sshd
start

This will restart sshd whenever it is not found on the system.

 9

Manual Confirmation – Sometimes, there are events that just can’t be accounted for
automatically. For example, you may have to wait for a tape to arrive before a job can be
launched. Or you may have to wait for a manual analysis of a report before continuing on
a schedule. In cases such as these, it would be nice to be able to set the event up, and put
it on hold until you are ready to release it for processing. OpenJCS allows for just such a
mechanism. It allows you to specify that an event must receive manual confirmation from
system management before it can be processed. It also allows you to tag the hold with a
label that can be used to remind you why the event is on hold.

File Dependencies – Files are the essence of data processing. It would be nice to be able
to schedule not only according to the existence (or non-existence) of a file, but also
according to the characteristics of the file (empty, non-empty, open, closed, size, type,
permissions, modification date, and so on). OpenJCS allows you to make use of all of
these dependency types in your scheduling.

Job Dependencies – When you have a job processing system, the relationships between
jobs become extremely important. A job may depend on one or more other jobs
completing before it can be launched. Fortunately, OpenJCS provides multiple ways to
define job dependencies. It even lets you set up dependencies based on the current state
of another job, even if that job is on another system.

Job Concurrency – Sometimes, you may only want a job to execute if one or more other
jobs are currently running. OpenJCS allows you to specify job concurrencies that must
(or must not) exist before a job can be launched, and these concurrencies can exist within
a system, or across several systems. Job concurrencies are maintained via Job Runbooks.

Resource Dependencies – No matter how robust your systems are, they have their limits.
Only so much of a resource is available at any time. There is only so much CPU
available, only so much memory, so much bandwidth, and so on. The ability to distribute
your workload according to resource availability is absolutely critical. Overloaded
systems cause response time delays, and underloaded systems waste money. OpenJCS
provides a way to define resources, and make your workload dependent on the
availability of required resources. OpenJCS has a very flexible resource definition system
that you can use to mirror the resources available in your environment. See the Resource
section or the resource command for more information about resources in OpenJCS.

Other Dependencies – We have demonstrated lots of dependencies that dictate things
that have to happen before a job can begin to execute, but what about if we want to start
synchronizing jobs that are already executing? Well, OpenJCS provides mechanisms for
doing just that. First off, OpenJCS provides special variables that can be shared between
processes, jobs, users, groups and even systems in the domain. You can specify at what
level the sharing takes place, and the owner of the variable can specify exactly what kind
of access to the variable is allowed, and by whom. This creates unmatched opportunities
for information sharing and job synchronization.

 10

The second method of job synchronization available is in the job control shell (jcsh)
itself. It provides a when command that releases a block for processing when a logical
condition becomes true. This means you can effectively create dependencies that are
checked while the job is executing, as opposed to being checked before the job can be
released for processing.

 11

Batch Environment Definitions

Job – A job is the central unit of work and entity management in this scheduler. A job is
a batch process that can be formed by a single command, a series of commands or a file
of commands. Once a job is successfully introduced, it is completely separate form the
user’s process tree, and executes under OpenJCS’ batch environment. A job will be
executed as a process that by default runs under the ID of the user that launched the job.
The ID can be changed via the job’s job card or by commands that alter the job before it
begins execution. A job is launched via the job -launch command.

Serial Queue – A series of jobs that execute sequentially. A serial queue can be created
either via the job -launch command or by attaching an –after dependency to a job.

Jobqueue – A jobqueue is a way to restrict the parallel execution groups of jobs, and to
enforce consistent standards on the jobs in the queue. The maximum number of jobs that
can execute at one time in a jobqueue can be changed as needed. Some of the restrictions
and standards that can be placed on a queue are: minimum job priority a job must have to
be admitted to the queue, maximum number of concurrent jobs in the queue, maximum
load on the hosts serving the queue, job numbers that will be assigned to the queue,
resources demanded by each job in the queue, queue hierarchy, conditions placed on
each job in the queue before it is permitted to execute and process execution priority
profiles. Jobqueues can also be nested as desired, such that the jobs in a given queue are
also counted toward the maximum number of simultaneous jobs in the parent of that
queue. Jobqueues are managed via the jobq command.

Job Number Family - A family of jobs that will receive similarly formatted job
numbers, and will have similar dependencies placed on them. This permits jobs that are
related to be viewed together easily. Job Number families are managed via the jobnum
command.

Job State – In a job’s lifecycle, it can pass through several states. The states defined in
this system for a job are:

Job State

(Primary)

Meaning Substates (Secondary)

EXEC Job Is Active
and Executing

EVAL – Job is being pre-processed.
INTRO – Job is being introduced into job input spooler.
EXEC – Job is executing.
VERIFY – Finished, verification proceeding.

SUSP Job Is Active
But on Hold

SUSP – Job suspended by system management.

SCHED Job Has Not
Yet Started
Executing

HOLD – Job is on hold per System Management.
SCHED- Job has unfulfilled dependencies.
RESOURCE – Job has unmet resource needs.
WAIT – Jobs priority is lower than the fence for the

 12

queue, or the queue is already full.
RUNBOOK – Job is being evaluated according to its
runbook.
LOCKED – Job has been locked by its runbook.

EOJ Job Ended OK – Job finished successfully.
WARN – Job finished with warnings.
ERR – Job finished with errors.
FAIL – Job failed before finishing.
ABORT – Job aborted by System Management.

Job Runbooks – A job runbook is a set of constraints, permissions and instructions to be
performed at the introduction and conclusion of a job. The runbook is actually a file that
contains the list of instructions and permissions, and it is associated with one or more
jobs via the job -runbook command. In the file, some of the constraints that can be
placed on the job are: who can launch the job, what its priority is, when it can run, what
jobs it can run with (and which ones it can’t), how the job is permitted to log on, what
machines are permitted to run the job, what job queue and job family it will use,
dependencies that will be attached automatically to the job, and what shell it will use to
execute. See the Runbook section for more information about Job Runbooks.

Preprocessors – Preprocessors are processes that read job files as input, use various
types of substitutions to create the finished job file as output. The preprocessor could
search the job for special reserved words, for example, and substitute in content specified
by those reserved words.

 13

Resources

Resources provide a way to restrict concurrency of jobs and simulate various aspects of
system load management. For example, a resource can be created to limit the number of
jobs accessing a given database at any given point in time, or a resource could be created
to keep jobs from being launched when system load is too high, or when high user traffic
is expected. A resource is created via the resource -add command. Once a resource is
created, its use is not automatic. It has to be explicitly requested by the commands that
support resource dependencies (job –launch, jobq and schedule, for example). An
exception to this is when a resource requirement is set up in a job’s runbook (see Job
Runbooks).

There are two different allocation methods for a resource. The first way it can be
allocated is if the resource has a fixed maximum count attached to it. In this case, when a
request is made for that resource, if there are enough unallocated units of that resource
available, the request is granted, and the number of units requested are deducted from the
number available. If there are not enough units of the resource available, the request is
queued until there are enough units available.

The other allocation method for a resource occurs when the resource does not have a
maximum count attached to it. Instead, it has an allocation rule attached to it. In this case,
whenever the resource is requested, the attached rule is executed, and the results returned
by the rule dictate whether the request is granted, denied or queued and retried later. This
resource type is very useful for resources that are more aligned with performance metrics,
such as system load, CPU usage, available memory, or network traffic levels.

JCS Variables

JCS Variables are similar to environment variables, but JCS variables can be shared
between processes, jobs, users, groups, systems or even regions as desired. JCS variables
can also be made permanent if desired. This creates opportunities for unparalleled
information sharing. For example, a job can set a given JCS variable to a value, and
another job that has appropriate access to the variable can read that value, without the
jobs having to have any knowledge of each other. Or a job can wait for a given JCS
variable to be set to a particular value, without having to know which job or process will
be responsible for setting the variable to the desired value. JCS variables can be used to
synchronize processes, share information, and set execution values, among other things.
JCS variables make cooperative processing easier, even when that cooperation needs to
extend between dissimilar systems. JCS variables also provide access security, so that the
owner of a variable can specify who has access to the variable, and what access is
available (ability to set a variable value, read a variable value or administer permissions
for the variable). JCS Variables are managed via the variable command.

 14

Regions

A region collection of related hosts. Jobs within a region can share JCS variables and
resources. Regions can also be used as assignment targets for virtual hosts. A region can
be a collection of individual hosts, subnets, supernets, portions of a DNS domain, or any
combination of the above. A region can even be a collection of other regions. One
particularly useful use for regions is gathering together systems that perform a similar
function so that they can share variables and resources. Regions are managed via the
region command.

Virtual Hosts

A virtual host is a load balancing device used to distribute jobs and commands among
several target machines. This provides additional scalability in the scheduling mix. The
user can choose from several load balancing algorithms: round robin, load based, cpu
usage based, network traffic based, fewest concurrent jobs, job response time, resource
based and based on an arbitrary rule provided by the user. For further information about
how virtual hosts are defined, see the virtual command.

Once a virtual host is defined, jobqueues, resources and JCS variables can be defined and
shared among the target members of that virtual host.

Ask/Reply Facility

The ask/reply facility permits a process to ask system management for information.
When a process requests information via the ask command, the process is stopped until
the request is answered via the reply command. Also, the recall command will show all
outstanding reply commands. Finally, the automatic reply facility provides a way to
specify answers that should be provided automatically to selected ask commands.
Automatic replies are specified via the autoreply command.

Rulesets

Rulesets are scripts or collections of commands used for various purposes by the
scheduling system. Rulesets can, for example, open and close queues, determine how
resources should be allocated, determine which host should launch a job or select the
queue for a job. Rulesets are managed via the rule command.

 15

Object Scope

A unique aspect of OpenJCS is object scope. The scope of an object is the range for
which the object is defined. For example, an object can be limited to a user, a job, a host,
a region or can have no limits at all (i.e. it will be defined all across the scheduling
domain). An object scope has four parts: locality, user, job/process and class. You can
specify any combination of of these parts in the scope of an object, or none of them. If
no scope is specified for an object, and no default scope is specified for the object, it is
assumed to be a global object (by default, only system managers can specify global
objects). The locality portion of a scope definition specifies what host or hosts can see the
object. Some examples of locality scope are: host, region, virtual host, and domain. The
user portion of a scope definition specifies what user or users can see the object.
Examples of user scope are: user, group or role. Job/process scope specifies what jobs or
processes can see an object. Examples of job/process scope are: job, process, process
tree, jobqueue or job number family. Class scope is rather arbitrary in nature, and is not
specifically tied to any particular aspect of the scheduling system, which makes it
potentially useful for defining relationships that are not immediately obvious, or for
partitioning the other scopes into more finely grained units.

A particularly useful application of scope is in the definition of variables and how they
are shared. Because of scope definition, you can have two distinct variables with the
same name, as long as their scopes do not overlap. For example, you could have a
variable named JOBS_REMAINING on host a with its scope set to host a, and a different
variable named JOBS_REMAINING on host b with its scope set to host b. The two hosts
would only see their own JOBS_REMAINING variable. Or for another example, suppose
you wanted to create a variable called ACCT_UPDATING visible only to your
Accounting machines. For this, you would first create a region that encompasses your
Accounting machines, then create a variable ACCT_UPDATING whose scope is that
particular region. Scope is a very useful means of defining who can see what in the
scheduling environment.

Default scope for an object is defined via the scope command.

The objects that can be given scope are: variables, resources, jobs, jobqueues, job number
families, auto-replies and virtual hosts.

Examples of scope usage in creating objects:

variable shutdown%global=0

Creates a global (visible to the whole domain) variable called shutdown, and assigns it a
value of 0. By default, this command will work only if the user issuing it is a system
manager.

scope resource:hosta* -for host:hosta -to host:hosta
resource –add –limit 3 hosta_db

 16

Creates a resource named hosta_db local to host hosta (assuming the resource command
was issued from hosta), and allows up to 3 of this resource to be allocated at any time.
Note that the scope command says that any resource created on hosta that begins with
hosta will be limited to that host only.

 17

 Architectural Fundamentals

OpenJCS relies on master scheduler daemons (openjcsd), a client daemon on each host
participating in the scheduling domain (jcsjobd) which also doubles as the job
controller/dispatcher for that host, and one or more service listeners for the services
provided by OpenJCS. The services and daemons used by OpenJCS are as follows:

JCS Master (openjcsd) – The master controller for an OpenJCS domain. This daemon
handles domain membership, region administration, service map distribution and
permission lists. Every host will have an openjcsd running on it, and communication to
the other OpenJCS daemons pass through openjcsd to get to the target daemons. There
can only be one active master openjcsd for the domain, but others in the domain will be
defined as standby masters, and will also serve as pass-through systems to the current
master when not active.

JCS Execution (jcsjobd) – This daemon is responsible for every process that is
dispatched from OpenJCS to execute on the host.

JCS Heartbeat (jcshbd) – This process sends a UDP heartbeat request to openjcsd and
each of the service masters periodically, and if its heartbeat fails to the current master, but
not to one of the candidate failover masters, it calls for a master election. This process is
a child process to jcscomd.

JCS Scheduling (jcssched) – Provides the repository for schedule checking, and
dispatches events to target clients.

JCS Variables (jcsvard) – Maintains all JCS variables across the domain.

JCS Resources (jcsresd) – Maintains all JCS resources, and controls allocation of same.

JCS Replies (jcsaskd) – Maintains list of pending replies, as well as all automated
replies.

JCS Virtual Hosts (jcsvirtd) – Maintains Virtual Host lists, rules and tokens, and
allocates Virtual Host workloads.

JCS Calendars (jcscald) – Maintains all information regarding OpenJCS calendars.

JCS File Transfer (jcscpd) – Performs file transfers between hosts in OpenJCS.

The listeners communicate via SOAP calls. The call is first routed to the jcsjobd for the
current host, which then uses its service map to decide where to route the request.

 18

The location and quantity of listeners defined for a domain is contained in the
openjcs.conf file. The default is one listener per service on each host in the domain, with
daemons for virtual hosts and regions being kept on the current master.

System Level Components

In order for OpenJCS to perform its job properly, certain system level components must
be in place. Some of these components are:

� DBMS – As of this writing, the only DBMS that OpenJCS will use to maintain its
job execution history and component values is PostgreSQL. Other databases may
be supported in the future if there is sufficient demand to warrant the development
effort involved.

� Apache Web Server – This is required if the Web GUI for OpenJCS is used
(highly recommended).

� C++ – Used to implement the performance-critical aspects of OpenJCS (memory
caches, for example).

� Python and Zope – Used to implement the less performance-critical aspects of
the OpenJCS system.

� Java Virtual Machine – Another requirement if the Web GUI is used. It is also
required on the client machine if the client GUI is used.

� PHP – Used in the Reporting GUI.
� ssh – Used to secure the communications between clients and services.

System Object Definitions

Scope
Job
Jobqueue
JobNumber
Reply
AutoReply
Variable
Resource
Region
VirtualHost
VirtualHostMember
Rule

 19

System Master Election and Failover

An OpenJCS domain is controlled by the system master, which is elected by all hosts in
the domain. Whenever a host cannot reach a master or service provider, it calls for an
election on that master or service. The election is conducted on a “black ball” basis. That
is, first the hosts “black ball,” or vote out, prospective masters they cannot get a response
from within the timeout interval (default is 30 seconds). If one prospective master has
fewer “black ball” votes than the others, it becomes the master. If not, all the hosts tied
for fewest “black ball” votes run in a response time election. The response times in
milliseconds to the original “black ball” election for the candidates are tallied, if one has
a shorter maximum response time than the others, it becomes the master. If no clear
winner is decided at this point, the prospective masters tied for the lowest maximum
response time are ordered by their appearance in the elector list for the service, and the
first host in the list that is found among the remaining eligible prospects is selected as the
master.

Notes

Order of dependency resolution:
1) Except
2) Until
3) Date Dependencies (at, between, deadline, every, from, to, restart, in, on)
4) Job Dependencies (after, job, with, without)
5) File Dependencies (file)
6) Logical Dependencies (parm, when, whenever, if, unless, until)
7) Ask
8) Resource Dependencies (resource)

Priority for Job modifiers:

1) permissions from job runbook
2) modify command
3) job command
4) launch command
5) jobcard
6) jobq
7) virtual server
8) jobnumber

 20

Commands

answer [{-host hostname|-virtual vmname}] pid replystring

answer will be a symlink to reply

ask [–timeout nnn] [-default answer] [-maxlen len] [-minlen len] [-edit regexpr] [-
[no]echo] [-hint hint_text] [{-host hostname|-virtual vmname}] question_text
ask [{-host hostname|-virtual vmname}] –cancel pidnum [-error errnum] [-message
msgtext]

Create a pending reply. The command prints the response received. If echo is enabled
(default), the question_text is echoed to stderr. Timeout is the maximum amount of time
in minutes that the ask command will wait for an answer. If the request times out, then
the default answer will be returned. If no default is given, a null answer will be returned.
Minlen and maxlen specify the minimum and maximum lengths a response can be, and
edit specifies a regex that will be used to check the format of the answer. If the answer
fails the check, the ask command is re-posted. –cancel cancels a pending reply and forces
it to error out. errnum specifies the error status that will be returned by the ask command,
and msgtext specifies the error message that will be returned to stderr. Default errnum is
1 and default text is “Request cancelled by system management.”

autoreply {name|-all}[%scope] -show
autoreply {name|-all}[%scope] -delete
autoreply name[%scope] [-file filename […]] [-keep] -response
[keytext=]replystring[;…]

Sets up, deletes or displays an automatic reply as well as optionally setting the scope for
which the automatic reply is defined. –file refers to the file that was used to stream a job
via the launch command. Keytext= specifies that the automatic reply will be used only
for a pending reply whose text matches the regex specified by keytext. Multiple
automatic replies for a process can be specified by separating the responses with
semicolons (no unquoted spaces in either the keytext or replystring). –keep specifies that
the automatic reply will not be deleted after it is used (default is delete the automatic
reply after it is exhausted). For the definition of scope, see the scope command

calendar {-create|-modify} calendarname calendarfile
calendar {-delete|-default|-show} calendarname

Calendar maintenance.

 21

datecalc [-format format] [-calendar calendarname] [increment […]]
Where

increment::=[[+|-]nnn [interval]|nlsdate]
and nlsdate is a date in the given calendar’s default format

Displays a date calculation. Default interval is days. If no calendar is specified, current
system calendar is assumed, and default date format is the current NLS format (must be
quoted if the format includes blanks) if available, and mm/dd/yyyy@hh:mi otherwise.

duration –from dateexpr [-to dateexpr] [-units unitname] [-int|-real]

Determine the duration in temporal units specified by unitname between two date
expressions. Default for –to is now, and default unit is whole days.

finfo filename,parmnum

Returns info about a file.

jcsallow {-permit|-forbid} permid [identifier […]] {–command “cmdimage”[…]|-role
rolename […]
jcsallow –show [-perm permid] [identifier […]]
jcsallow –rename permid newpermid

jcsallow –delete permid

Where

identifier::= {{-host|-virtual}=hostname|-region=regionname| -
jobname=jobname|-user=userid|-login=[jobname,]user.group| -
group=groupname| -role=rolename| -jobnum=jobnum| -file=filename|-
directory=dirname}

Sets execution permissions for various commands. All commands are permitted to system
management and cannot be forbidden to system management. By default, job -launch
commands are permitted to everyone, but only for jobs that login to the same user, group
and host as the user launching the job, and job -show is permitted to everyone. Also by
default, ask commands are permitted for everyone, and reply is permitted when the
requestor’s user, group and host match the user attempting the reply. Permissions are
applied by permid. Permid can cotain alphanumeric characters plus “,”, “.”, “/”, “+”, “-“,
“_”, “=”, “@”, “#”, and “:”.

By default, the following commands are permitted to everyone:

datecalc
finfo
variable (for variables in the user’s scope)

 22

job –show
job –launch (if the job logs on as the user’s userid and group on the user’s login host)
jobinfo
jobnum –show
jobnuminfo
jobnums
jobq –show
jobqinfo
preprocess
recall
replyinfo
resinfo
resuser
schedule
showsched

And by default, the following commands are reserved for system management only:

autoreply
calendar
jcsallow
job (except job-launch and job-show)
jobnum (except jobnum –show)
jobperms
jobq (except jobq –show)
region
resource
rule
stdlist
virtual

Roles are defined in the jcs.config file. The roles manager, supervisor, operator and
monitor are pre-defined. All except manager can have their capabilities modified in the
jcs.config file.

jcsconfig {-load|-save} [-file filename]
jcsconfig {-show}

Loads, saves or displays the current running configuration. This command can be issued
by System Management only.

jcsmaster {-elect|-show|hostname} [-service serviceid]

Service master control. The –show option shows the list of current service masters. The
option –elect forces an election among the eligible candidates for master for the service.
If a hostname is provided, then that host is assigned as the master for the service.

 23

job selector […] mods
job selector […] –read
job selector […] –runbook filename [-show|-delete]
job [selector […]] -show [showformat]
job [selector […]] -stats [stats_selectors] [stats_format]}
job -launch [-f filename][...] [schedule_modifier[...]][job_modifier[…]]

Where:

 selector::= -select {{host|virtual}=hostname|-region=regionname|
jobname=jobname|user=userid|login=[jobname,]user.group| group=groupname|
jobnum=jobnum|state={EXEC|OK|SUSP|HOLD[:holdtype[,…]]
|WARN|ERR|FAIL|EVAL|RUNBOOK}|file=filename|directory=dirname}

 mods::= {-cancel|-continue|-restart [label|linenum|prev|next|first]|-flush|-abort|-
inpri nnn|-suspend|-resume|-hold desc|-release releasespec|
{schedule_modifier|job_modifier[…]}}

releasespec::=[now|hold=holdtype]

holdtype::= {hold_desc|schedule_modifier|job_modifier}

showformat::= –format {[0-9]|short|long|deps|fieldname[:width[,…]} [-sort

fieldname[,…]] [-[no]head]

stats_selectors::= -stats [-start startdate] [-stop stopdate]

stats_format::=–format {[0-9]|short|long|fieldname[:width[,…]} [-sort

fieldname[,…]] [-rollup fieldname[,…]]

Manages an individual job or group of jobs. Selection criteria can be mixed and repeated
as desired. Selection criteria of the same type are logically OR-ed together, and the
results logically AND-ed together with selection criteria of differing types (Example: -
select user=root –select state=EXEC –select user=ckemp –select state=SUSP means find
all jobs running as root or ckemp whose current state is EXEC or SUSP). If jobnum
matches a job number family, the action is taken for the entire family, otherwise jobnum
is assumed to be a single job number or JSID. –cancel cancels a pending job. To cancel
an executing or suspended job, use –abort. –continue restarts a job that stopped because
of an error. Execution of this job continues from the next job step. –restart restarts a
stopped job at some other point in the jobstream. –flush deletes a stopped job. –inpri
changes the job’s input priority. If the job’s input priority is less than or equal to the job
fence for the job’s queue, the job will not be introduced. –suspend places an executing
job in a sleep state, and –resume resumes a suspended job. –hold causes the job to be
prevented from executing, and desc will show up under dependencies on a –show for the

 24

job. –release releases a hold on a job, and –release now removes all dependencies. –show
shows currently executing jobs. If a custom –format is used, the fields must match the
fieldnames in the jobinfo intrinsic below (use field names, not numbers).–read prints the
contents of the job, and indicates the current execution step of the job. –stats gives wall
time and CPU usage. Job -launches a job. If no filename is specified, the command takes
the job to be launched from STDIN. If multiple filenames are specified, they are launched
as a serial queue. All dependencies are attached to the first job in the queue. Job
modifiers are applied to all jobs in the queue. Default priority for a launched job is 20.

jobinfo {jobnum|jobname} parmnum

Returns info about a scheduled job. See the library routine jobinfo for the list of
parameters and information returned by this command.

jobnum [jobfamily[%scope] [-spec jobspec] [-select selectrule] [-start nnn -stop nnn] [-
restart|-delete] [schedule_modifier|job_modifier[…]]]
jobnum [jobfamily[%scope]] -show

Creates a smart job number family. spec must not contain white space, and each element
of the spec must be alphanumeric or one of: “@”, “#”, “-“, “_”, “+”, “:”, “,”, “.”, “/”, a
date format element (see date command) or “{}” to indicate the JSID. If the specification
does not include “{}”, the JSID will be appended to the specification. Example of a job
spec: #J{}-ACCT. jobnum by itself shows all current job number families. Default spec
is jobfamily-{}. Select specifies that a launched job will be placed in this job number
family if its launch does not already specify one and if the job fits selectrule. The values
supplied for start and stop must be positive integers such that start<stop. Also, if a
start/stop is provided for a queue, it must not overlap the start/stop for any other job
number family. Once a job number range is exhausted, it will restart from the beginning.
A –restart will force job numbering to restart from the beginning. If a start/stop
combination is not supplied, JSIDs will be assigned from all JSIDs not assigned to a job
number family. The unassigned job numbers can be restarted by doing a -restart on
reserved job number family DEFAULT. The spec for DEFAULT is #J{}. Job number
families are always local to a host machine. For the definition of scope, refer to the scope
command.

jobnuminfo jobfamily,info

Returns information about a job family. See the library routine jobnuminfo for the
parameters passed to and information returned by this command.

jobnums spec

Returns job numbers of all jobs fitting spec.

 25

jobperms [selector […]] –set [-temp|-perm] permid ident perm […]
jobperms [selector […]] {-add|-remove} permid [ident] perm […]
jobperms {-show [permid]| |-delete permid}

Where:

 selector::= -select {{host|virtual}=hostname|-region=regionname|
jobname=jobname|user=userid|login=[jobname,]user.group| group=groupname|
jobnum=jobnum| file=filename|directory=dirname}

ident::=[role,]{user|~|*}[.{group|~|*}][@{host|~|*}[:{host|virtual|region}]

 perm::={-permit|-forbid|-force|-delete} {schedule_modifier|job_modifier|runas
userid[.group]|password| nopass|admin}

Sets job permissions. Selectors (if provided) limit the target range across which the
permission is enforced. For example, -select region=accounting –select
directory=/opt/acct/jobs will affect jobs launched from the directory /opt/acct/jobs on all
machines in the accounting region. Selectors that reference a login, user or group refer to
the login of the job being administered. If no selectors are provided, then the permission
takes effect across the entire domain. An identifier refers to the person attempting to
launch or administer the job. “~” in an identifier means that part of the user’s login must
match the corresponding part of the job being launched for the permission rule to be
applied (Example: ~.~@~ indicates that the permission will be applied only if the user’s
userid, group and login host match that of the job the user is trying to administer). Default
is a job can only be administered by system management and by the user and group that
launched it. System management cannot be forbidden administrative control over a job.
Permissions are applied to a job in order of their permid. Only system management and
executing runbooks can use the jobperms command.

 26

jobq -create [queuespec[…]] queuename

jobq -alter [-add|-remove|-set] queuespec[…] queuename
jobq {-delete|-open|-close} queuename

jobq -show [formatspec] [queuename[…]]

Where
 queuespec::= [-select selectrule] [-maxload {nnn|jcsvar}] [-limit {nnn|jcsvar}[per
{source|target} {user|group|jobname|class|login|host|virtual|region}]] [–fence
{nnn|jcsvar}] [–pri {min|jcsvar},{max|jcsvar}] [-cutoff cutoffrule] [–parent queuename]
[-slice {msecs|jcsvar},{msecs|jcsvar}] [-nice {nice|jcsvar}] [-incr prichg[%]]
[schedule_modifier[...]] [job_modifier[…]]

 queuename::=name[%scope]

 formatspec::= [-v|-[0-9]|-format fieldname[:nnn][,…]]

Manage a jobqueue. Main queue is MASTER. It defines the maximum total size of all
user queues combined. Default queue is DEFAULT. SYSTEM queue is reserved for
system administration, and exists outside MASTER. Closing a queue does not affect any
running jobs, but simply forbids admission of any more jobs to the queue, regardless of
priority. If a cutoff rule is specified, that rule is executed and the queue is shut if the
status returned from the rule is greater than zero. Select specifies that a launched job will
be placed in this queue if its launch does not already specify a queue and if the job fits
selectrule. Maxload specifies a system load level at which the queue will be shut down
automatically. Limit specifies the maximum number of active (EXECUTING and
SUSPENDED) jobs that may occupy the queue at any point in time. Fence specifies the
minimum introduction priority a waiting job must have before being considered for
admission to the queue (default is 10). Pri specifies the minimum and maximum process
priority for the queue. Parent specifies the queue which is immediately above this queue.
Note that all active jobs in a queue count toward the parent queue limit. Slice specifies
the minimum and maximum number of CPU milliseconds per second that all jobs
combined in the queue may use. Note, however, that in no case will a process’ priority be
placed outside the process priority limits for the queue. Nice specifies a nice value that
will automatically be applied to every job in the queue. Incr specifies the increment by
which a process’ priority will be changed (up or down as needed) when it goes outside
the usage limits specified for the queue. jobq by itself displays all jobqueues. Note that a
jobqueue name must be unique across all machines that serve it. That is, if a jobqueue is
set up for a virtual host, none of the target hosts can have an existing queue with that
name, and if a jobqueue is set up on a local system, none of the virtual hosts for which it
is a target may have a jobqueue of the same name. For the format of a scope
specification, see the scope command.

 27

jobqinfo queuename,parmnum

Returns info about a jobqueue. See the library routine jobqinfo for the parameters passed
to and information returned by this command.

pause schedule_modifier[…]

Waits until the schedule modifiers specified are all true. If the command exits without all
the dependencies being filled (for example, hitting a specified –deadline, or specifying an
–if condition that is not true), the command exits with a nonzero status. If all
dependencies are met, then the command exits with a zero status. This command allows
the user to create a more fine-grained control of portions of a job as it executes.

preprocess [-as userid.groupid] [-[no]nest] [-processor processor] [file …]

Runs input through a preprocessor.

recall [-host {hostname|all}|-virtual {vmname[%scope]|all}|-region {regionname|all}]

List pending replies posed via ask. Recall items are listed in the following format:

rpid/hh:mi/host:{H|V|R}/userid.group/jobnum/question_text?[(hint)]

If no filters are specified, then only pending replies for the current host are shown. For
format of the scope portion of the command, see the scope command.

recap [-q|-n] [scope]

Displays the current schedule and/or performs a system status check. If –q is specified,
only the status check will be performed. If –n is specified, the schedule is displayed
without performing a status check. Default is perform both status check and schedule
display. If a scope is displayed, only the events fitting that scope are displayed. To see the
format of the scope specification, see the scope command.

region regionname [[-add|-set|-remove][file[…]]|-delete]

Creates a region of related systems. The lines of the region file have the format:

{{include|exclude} {system|virtual|region|network|dnsname}=spec[,…]|#comment}

If no region files are specified, then the elements for the region are taken from stdin.

reply [{-host hostname|-virtual vmname[%scope]}] rpid reply

Answer pending reply posed via ask. For the format of the scope portion of the
command, refer to the scope command.

 28

replyinfo replyspec,parmnum

Returns info about a pending reply. See the library routine replyinfo to see the
parameters passed to and information returned by this command.

resinfo resource,parmnum

Returns info about a resource. See the library routine resinfo to see the parameters passed
to and information returned by this command.

resource -pending [-ppid ppid] [-pid pid] [{-host hostname|-virtual vmname[%scope]}]
{-deny |-return|-modify {-timeout nnn|-pri priority|-resource [+|-]resourcespec,…}}
resource –get [-nowait|[-timeout nnn|-pri priority][…]] resource[:count|all] [...]
resource –return {-all|-last|resourcespec […]}
resource {-add|-delete|-modify|-freeze|-unfreeze} [properties] resource
resource –access resource [-owner [+|-][r][x][w]] [-member [+|-][r][x][w]] [-other [+|-
][r][x][w]] [-scope scope [+|-][r][x][w]]
resource –show [-pending] [{-host hostname|-virtual vmname}] [scope] –sort sortspec
[resource[…]]

Where

 properties::= [–d description] {–limit {max|jcsvar}|–rule command} [–min

{priority|jcsvar}] [–max {priority|jcsvar}] [-contains resourcespec [,…] [-parent
resource] [{-host hostname|-virtual vmname}] [-alloc sortspec[,…]]

 resourcespec::=resource:{num|all}

 resource::=resourcename[%scope]

sortspec::={AGE|PRIORITY|COUNT|REQUESTS|AVAIL|sortrule}[:ASC|:DESC]

Resource control. Resource -pending works on pending resource requests. Resource –get
requests a resource. The -nowait form of the command gets a resource immediately. If the
request is successful, the command returns a 0. If not, it returns an error code. A resource
–get without –nowait will wait for the resource(s) specified before it returns a status. If it
is not successful within the time allowed, or if the request is denied, an error code is
returned. Resource -return –all returns all resources requested by this process. Resource -
return –last returns all resources requested by the last need. A process exiting returns all
resources it requested. By default, a process can only get resources for groupings of
which that process is a member. The –access form of the command defines what access is
granted to the resource. An access of “r” means the scope specified can do a show on the
resource. An access of “x” means –gets and –returns are permitted. An access of “w”
provides the capability of administering the resource (add, delete, modify, grant, refuse).

 29

The –add/-delete/-modify form of the command manages the resources themselves. If
max<=zero or not specified, resource has no specific limit. In this case, a rule MUST be
provided. Exit 0 from rule means request granted, anything else denied. For example,
using system load as a resource would allow a user to specify that a job can be run only
when system load is below 3. If no count is specified, or if the count is set to <=0, then
rule is executed to see whether to allocate the resource or not. If count >0, then rule is
executed only when more than one process is waiting for a resource, and rule determines
which process is allocated first. The names of all resources available on any given host
must be unique, and a resource name can only contain alphanumeric characters plus “.”
and “_”. If a parent resource is specified, every time this resource is incremented or
decremented, the corresponding parent resource is treated likewise. For the format of the
scope portion of the command, refer to the scope command.

resuser resource pid parmnum

Returns info about a user of a resource. See the library routine resuser for the parameters
passed to and information returned by this command.

rule rulename[%scope][(parm[=defaultvalue][,…]) –file filename
rule rulename[%scope][(parm[=defaultvalue][,…])[=]

do

.

.

.

[return value]
.
.
.

done

rule -show [{rulename|pattern}[%scope]]
rule -delete rulename[%scope]
rule –access rulename[%scope] [-owner [+|-][r][w][x]] [-member [+|-][r][w][x]] [-other
[+|-][r][w][x] [-scope scope [+|-][r][w][x]]

Where

Defines a rule for use in resource and job control commands. For the format of the scope
portion of the command, refer to the scope command.

 30

schedule [-name jobname] [-user userid] [-group groupname] [-jobnum jobnum]
[schedule_modifier][...]
[job_modifier][...] –cmd cmdimage

schedule [-name jobname] [-user userid] [-group groupname] [-jobnum jobnum]
[schedule_modifier][...]
[job_modifier][...] -delete

schedule [-name jobname] [-user userid] [-group groupname] [-jobnum jobnum]
[schedule_modifier][...]
[job_modifier][...] -edit

schedule [-name jobname] [-user userid] [-group groupname] [-jobnum jobnum]
[schedule_modifier][...]
[job_modifier][...] -modify

schedule [-name jobname] [-user userid] [-group groupname] [-jobnum jobnum]
[schedule_modifier][...]
[job_modifier][...]

do

.

.

.

done

Schedules an event.

scope [object_type:namepattern] [–for scope] {[-to] scope|-delete|-show}

Where

 object_type::={all|variable|resource|virtual|job|jobnumber|jobqueue|autoreply}

scope::={localityscope|userscope|jobscope|subclass}

localityscope::={local|region:regionname|host:hostname|virtual:vmname|global}

[/userscope|/jobscope|/subclass]

userscope::={user[:userid]|group[:groupid]|role:rolename}[/jobscope|/subclass]

jobscope::={temp|ptree[:pid]|job[:jobname]|jobnum[:jobnum]|

jobq[:jobqueuename]}[/subclass]

subclass::=class:classname

Sets the default scope for a scheduling object.

 31

showsched [{-host hostname|-virtual vmname}] [-from fromdate] [-to todate] [-calendar
calendarname]

Prints a schedule.

stdlist [hostname:]jobname

Prints a job’s stdlist (stderr + stdout).

variable [–indirect] jcsvar[%scope][=value]
variable -show [{jcsvar|pattern}[%scope]]
variable -delete jcsvar[%scope]
variable –lock [-conditional|-unconditional] jcsvar[%scope]
variable -unlock {-all|jcsvar[%scope]}
variable –access jcsvar[%scope] [-owner [+|-][r][w][x]] [-member [+|-][r][w][x]] [-other
[+|-][r][w][x] [-scope scope [+|-][r][w][x]]

Where

jcsvar::=variablename[“[“index[,…]”]”]
Example: CPUtime[“myhost”,jobnumber]

Sets, shows or deletes a JCS variable. Default is local variable for the current process
tree. The advantage of JCS variables is that they can be shared between processes, jobs or
even multiple systems. JCS variable names can contain alphanumeric characters, as well
as “_”, “-“ and “.” A JCS variable name must start with either an alpha character or “_”.
The first form (variablename=value) sets a value for a JCS variable, and creates the
variable if it does not already exist. –show displays ALL JCS variables matching the
criteria specified. The variables are displayed in a variable=value format, one per line. –
delete deletes a JCS variable. If no assignment is made in a variable command, and
neither –show, -delete, -lock, -unlock or –access are specified, the command returns a
single value for the variable specified. For the format of the scope portion of the
command, please refer to the scope command.

 32

virtual –show [vmname[%scope]]
virtual –delete vmname[%scope]
virtual –modify vmname[%scope] {-param
{method|minfree|state|failover|overload|limit}= ”valuestring”|-member
name=”memvals”}[…]]
virtual –edit [vmname[%scope]]
virtual vmname[%scope]
begin
[method [weighted] [balance_method]
[minfree {nnn|jcsvar}]
[state {enabled|disabled|halted|failed}]
[failover vmname]
[overload vmname]
[limit [per {user|group|jobname|file}] {nnn|jcsvar|rule}]
[maxqueue {nnn|jcsvar|rule}]
[options {job_modifier|schedule_modifier}[…]
[runbook runbookfile]

{member_spec […]|region_spec}

end

Where

member_spec::= member [virtual] name [weight [rule] weight] [priority [rule]
priority] [limit {nnn|jcsvar|limit}] [state {enabled|disabled|halted|failed}]
[runbook runbookfile] [resource resourcespec] [availability rule] [options
“{schedule_modifier|job_modifier}[…]}”

region_spec::= region regionname [weight [rule] weight] [priority [rule] priority]

[runbook runbookfile] [resource resourcespec] [availability rule] [options
“{schedule_modifier|job_modifier}[…]}”

balance_method::= { roundrobin|load|cpu|network|jobs|jobresp|resource

resourcespec|rule}

 resourcespec::=resource:{num|jcsvar|all}[…]

 resource::=resourcename[%scope]

Sets up a load balancing virtual host. Only system management can set up a virtual host.
Weighted means that the load balancing method will take into consideration the weight
assigned to the target hosts in its calculation of the next host to be used. For example, on
a virtual host using a load balancing method of weighted load, if host_a has a current load
of 3 and a weight of 10, and host_b has a load of 5 and a weight of 50, then the next load
of work will be assigned to host_b because host_b’s load would have to be 5 times that of

 33

host_a before host_a would be assigned work. Weighted load balancing cannot be used
with the resource load balancing method. You can specify resource at the virtual server
level or at the member level, but not both. Membership in a virtual host can be specified
by member host or region, but not both. If a virtual host is set up by region, only one
region can be specified for the virtual host. You can, however, create a virtual host made
up of other virtual hosts, each containing a different region. If priorities are used, each
member of the highest priority must be within minfree jobs of its limit before any
member in the next lower priority group can be used. If an availability rule is specified,
that rule is executed to see if the member host is available for job assignment. For the
format of the scope portion of the command, refer to the scope command. Note: the
scope for a virtual host cannot be limited to a single host.

Virtual Host States. A virtual host state of enabled means that at least one target host
available to process jobs. A state of disabled means that existing jobs will be processed,
but no new jobs are being accepted. Blocked means that no target machines are available
to process jobs. Halted means that the virtual host has been aborted, and the state of jobs
on the target machines cannot be ascertained. Aborted means all jobs on target machines
for this virtual host have been aborted, and the virtual host Halted. Failed means the
virtual host has been failed over to its failover virtual host.

Member Host States. A member host state of enabled means that the host is available to
process jobs. A state of disabled means that existing jobs will be processed, but no new
jobs are being accepted. Blocked means that the host has reached its job capacity. Halted
means that the host state and the state of its jobs cannot ascertained. Aborted means all
jobs on target machines for this host have been aborted, and the host disabled from
accepting new jobs.

vsh [user@]vhostname[%scope] [-l user] [-e mech] [cmdimage]

Executes the command on the virtual host indicated. Supported values for mech are rsh
and ssh. For the format of the scope portion of the command, refer to the scope
command.

 34

openjcs.conf File

The openjcs.conf file contains the startup configuration for OpenJCS. When the file is
modified, send the openjcsd daemon a –HUP signal to force it to re-read the file.

Here is a basic layout of the jcs.config file:

Sections:

1. Aliases
1.1. Section Header: [ALIASES]

2. Properties
2.1. Section Header: [PROPERTIES]
2.2. Entries

2.2.1. property_name=property_value
2.2.2. Valid Property Names

2.2.2.1.jcsuser
2.2.2.1.1. Default User Login for OpenJCS Daemons
2.2.2.1.2. Default is root

2.2.2.2.jcsgroup
2.2.2.2.1. Default Group for OpenJCS Daemons
2.2.2.2.2. Default is wheel

2.2.2.3.init
2.2.2.3.1. Command to execute when OpenJCS Starts
2.2.2.3.2. Default is :

2.2.2.4.fin
2.2.2.4.1. Command to Execute When OpenJCS Shuts Down
2.2.2.4.2. Default Is :

2.2.2.5.wrapper
2.2.2.5.1. Wrapper Process for Communication
2.2.2.5.2. Default is ssh (must be in PATH)

2.2.2.6.auth
2.2.2.6.1. Authentication Method
2.2.2.6.2. Default is passwd

2.2.2.7.session_timeout
2.2.2.7.1. Session Timeout Duration in Minutes
2.2.2.7.2. Default Is 30
2.2.2.7.3. 0 Disables Session Timeouts

2.2.2.8.cache
2.2.2.8.1. Defines What Is Cached on Each System
2.2.2.8.2. Default is var, resource, job
2.2.2.8.3. Available

2.2.2.8.3.1.var
2.2.2.8.3.1.1. JCS Variable Tables

2.2.2.8.3.2.resource
2.2.2.8.3.2.1. Resource Listings and Queues

 35

2.2.2.8.3.3.job
2.2.2.8.3.3.1. Executing Job Tables

2.2.2.8.3.4.jobnum
2.2.2.8.3.4.1. Job Number Families

2.2.2.8.3.5.jobq
2.2.2.8.3.5.1. Job Queues

2.2.2.8.3.6.virtual
2.2.2.8.3.6.1. Virtual Host Definitions

2.2.2.8.3.7.ask
2.2.2.8.3.7.1. Pending Replies and Auto-Replies

2.2.2.8.3.8.calendar
2.2.2.8.3.8.1. Calendar Definitions

2.2.2.9.root_gui
2.2.2.9.1. Denotes Whether root Logins Via GUI Are Permitted
2.2.2.9.2. Default Is OFF (Not Permitted)

2.2.2.10. root_web
2.2.2.10.1. Denotes Whether root Logins Via Web Interface Are Permitted
2.2.2.10.2. Default Is OFF (Not Permitted)

2.2.2.11. remote_auth
2.2.2.11.1. Denotes Whether Re-Authentication Is Required When

Working On Remote Host
2.2.2.11.2. Values

2.2.2.11.2.1. ALWAYS
2.2.2.11.2.2. NEVER
2.2.2.11.2.3. ONCE

2.2.2.11.3. Default Is ONCE (Must Re-Authenticate First Time Only)
3. Logging

3.1. Logging Facility Definition
3.1.1. Section Header: [LOGGING]
3.1.2. Notes

3.1.2.1.Need to be able to define whether it goes to syslog, local logging, both
or neither

3.1.2.2.Need to be able to define logging levels for various message types
(examples: pending reply, job failure, job introduction)

3.1.2.3.Possibly an external logging processor?
4. Services

4.1. Service Definitions
4.1.1. Section Header: [SERVICES]
4.1.2. Entries

4.1.2.1.service_type:{job|schedule}:keyword[…]
4.1.2.2.Examples

4.1.2.2.1. reply:schedule:ask
4.1.2.2.2. jobq:job:jobq:jobqrule

4.2. Service Daemons
4.2.1. Section Header: [DAEMONS]
4.2.2. Entries

 36

4.2.2.1.daemon_name:service[…]
4.2.3. Examples:

4.2.3.1.jcsaskd:reply
4.2.3.2.jcsjobd:jobq:jobnumber

4.3. Service Targets
4.3.1. Section Header: [TARGETS]
4.3.2. Entries

4.3.2.1.service_type:servicename:{host|region|virtual|global}:loc_name:target
_host[,…]:port

4.3.2.2.Service Types
4.3.2.2.1. jobq
4.3.2.2.2. jobnumber
4.3.2.2.3. variable
4.3.2.2.4. resource
4.3.2.2.5. jcsallow
4.3.2.2.6. reply
4.3.2.2.7. calendar
4.3.2.2.8. region
4.3.2.2.9. schedule
4.3.2.2.10. rule
4.3.2.2.11. virtual
4.3.2.2.12. master

4.3.2.3.Examples
4.3.2.3.1. jobq:DEFAULT:global::hosta:8666

4.3.2.3.1.1.The jobq DEFAULT will be managed for all hosts by
hosta, port 8666

4.3.2.3.2. resource::virtual:acct:pactdb01:27365
4.3.2.3.2.1.All resource allocations for the virtual host acct will be

handled by host pactdb01, listening on port 27365
4.3.2.3.3. jobq:::host:~:9999

4.3.2.3.3.1.Each host will manage its own jobqueues, and the listener
for the service will be on port 9999

4.3.2.3.4. ::global::master01,master02,master03:8686
4.3.2.3.4.1.All services will be managed by host master01, with

failover on master02 and master03, all listening on port 8686
5. Scheduling Domains

5.1. Section Header: [DOMAINS]
5.2. Parameters

5.2.1. HIERARCHICAL=[on|off]
5.2.2. DELIMITER=char (Default is .)
5.2.3. PARENT=parentserver[:port]

5.2.4. Domain Name

5.2.4.1.DOMAIN=domainname
5.2.5. Master

5.2.5.1.MASTER=masterserver[:port]

 37

5.2.6. Slaves
5.2.6.1.SLAVE=slaveserver[:port][…]

6. Databases
6.1. Section Header: [DATABASES]

6.1.1. dbname=connectstring
7. File Locations

7.1. Section Header: [FILES]
7.2. Root Directory for OpenJCS

7.2.1. JCSROOT=rootdirectory
7.3. Executables

7.3.1. JCSBIN=[+]bindirectory
7.4. Runbooks

7.4.1. RUNBOOK=[+]runbookdirectory
7.5. Job Storage

7.5.1. JOBS=[+]jobdirectory
7.6. Recovery Files

7.6.1. RECOVERY=[+]recoverydirectory
7.7. Command Permissions File
7.8. Jobperms File
7.9. Log Files

8. Roles

 38

Job Runbooks

Introduction

Runbooks are ways of specifying how and when a job can run, and what sort of
processing needs to be done before the job is launched and after it concludes. A runbook
is simply an ASCII file that is related to a job via the job –runbook command. The file
itself contains aliases, selectors indicating the conditions under which various sections of
the runbook are to be performed, and the executable sections of the runbook.

Parts of Runbook File

• User Aliases

• Job Aliases

• Concurrency Aliases

• Scheduling Aliases

• Calendar Aliases

• Directory Aliases

• File Aliases

• Source Machine Aliases

• Target Machine Aliases

• Login Aliases

• Logical Aliases

• Selectors

• Launch Rules

User Alias:

USER_ALIAS name =
{userid|*|~}[.group|*|~][@{host|*|~}[:{HOST|VIRTUAL|REGION}]] [[+|-]…]
Examples:
USER_ALIAS admin=root-root@lab01-root@lab02-root@lab03
USER_ALIAS acct=*.acct-nobody.acct-
www.acct+*.fin+*.sys+*.*@acct:REGION

Job Alias:

JOB_ALIAS name= [{jobname|*|~,}]{userid|*|~}[.group|*|~]
[@{host|*|~}[:{HOST|VIRTUAL|REGION}]] [[+|-]…]
Examples:
JOB_ALIAS admin=root-root@lab01-root@lab02-root@lab03
JOB_ALIAS acct=*.acct-nobody.acct-
www.acct+*.fin+*.sys+*.*@acct:REGION+acctjob,*.*

 39

Concurrency Alias:

 CONCURRENCY_ALIAS name=[NOT][MIN|MAX] nnn [FOR [NOT]
(job_expr|job_alias)] [NOT](condition)) [AND|OR …]
 Where

condition::={subcondition|(subcondition) {AND|OR} …}

subcondition::=term {{=|<|>|<>|<=|>=|matches|contains|begins|ends}
term| between term,term|in term[|[…]]}

term::={jobinfo_expr|JOBNAME|jobq_expr|jobnum_expr|login_expr|
user_expr|var_expr|nnn|”quoted string”|`cmdimage`}

jobinfo_expr::=JOBINFO [nnn|mnemonic|jcsvar]

jobq_expr::= JOBQINFO [nnn|mnemonic|jcsvar]

jobnum_expr::= JOBNUMINFO [nnn|mnemonic|jcsvar]

login_expr:: = LOGIN [jobname,]user[.group]

user_expr::= USER user[.group][@host [:{HOST|REGION|VIRTUAL}]]

var_expr::= variablename[%scope]

For the format of scope expressions, refer to the scope command.

Scheduling Alias:

 SCHEDULING_ALIAS name=[not] schedule_modifier [and|or …]

 40

Calendar Alias:

 CALENDAR_ALIAS name=condition

condition::={subcondition|(subcondition) {AND|OR} …}

subcondition::=term {{=|<|>|<>|<=|>=|matches|contains|begins|ends}
term} |between term,term|in term[|[…]]}

term::={date_spec|”quoted string”|`cmdimage`|interval unit[.calendar]
date_calc,date_calc}

date_spec::= date_calc[:format]

date_calc::= {date|date_increment}[{+|-}…]

date_increment::= count[.duration[.calendar]]
 default duration is days, and default calendar is master.

date::=date_string[.calendar]
The format of date_string is dependent upon the NLS calendar format
specification for the calendar invoked (default is
mm/dd/yyyy[@hh:mi[:ss]]])

Directory Alias:

 DIRECTORY_ALIAS name=directory […]

File Alias:

 FILE_ALIAS name=file […]

Source Alias:

SOURCE_ALIAS name={host_reference|ip_reference}[…]

Where

host_reference::=[HOST:|VIRTUAL:|REGION:]targetname

ip_reference::={ip_addr[/{bits|netmask}|-ip_addr]
Examples:

192.168.0.0/24
192.168.1.128/255.255.255.128
192.168.1.50-192.168.1.100
192.168.1.101

Target Alias:

 41

TARGET_ALIAS name={host_reference|ip_reference|hw_addr}[…]

Where

host_reference::=[HOST:|VIRTUAL:|REGION:]targetname

hw_addr::=MAC:mac_address

ip_reference::={ip_addr[/{bits|netmask}|-ip_addr]
Examples:

192.168.0.0/24
192.168.1.128/255.255.255.128
192.168.1.50-192.168.1.100
192.168.1.101

Login Alias:

LOGIN_ALIAS name=[{jobname|*},]{user|*}[.{grp|*}][{+|-}…]
Examples:

LOGIN_ALIAS acctjobs=acct.*+fin.*+acctjob,*.*
LOGIN_ALIAS systems=root.*+*.sys+*.bin+*.dba+oracle.*

Logical Alias:

LOGICAL_ALIAS name=[NOT] (condition) [{AND|OR} …]

 42

Selectors:

Introduction:

INTRODUCTION intro_action[:selection]

Conclusion:

CONCLUSION concl_action[:selection]

Where

intro_action::={LOCK| LAUNCH [-edit “sed_cmd”[…]]| DENY
“errmsg”[,errnum]| HOLD “holdmsg”| sectionname}

concl_action::={{ABORT|FAIL|ERR|WARN|OK} [“errmsg”[,errnum]]
|sectionname}

launch_params::=[-trace] [job_modifier] […] [schedule_modifier] […]

selection::= [NOT] (subselector) [{AND|OR} …]

subselector::={USER {user_alias|user_spec}| JOB
{job_alias|job_spec}|CONCURRENCY {concurrency_alias|concurrency_spec}|
SCHEDULE {schedule_alias|schedule_spec}| CALENDAR
{calendar_alias|calendar_spec}| DIRECTORY {directory_alias|directory_spec}|
FILE {file_alias|file_spec}| SOURCE {source_alias|source_spec}| TARGET
{target_alias|target_spec}| LOGIN {login_alias|login_spec}|LOGICAL
{logical_alias|logical_spec}}

Introduction selectors are evaluated before the job is introduced. Conclusion
selectors are evaluated after the job finishes. If a selection is true (or if no
selection is provided), then the corresponding action is performed.

The special actions for the introduction selector are: LOCK, LAUNCH, DROP,
EDIT, HOLD and DENY. LOCK indicates that the job is to be locked in the
RUNBOOK state until this selection becomes false. DROP specifies launch
parameters that should be removed from the job –launch command line before
the job is submitted. EDIT specifies a sed command or commands that should be
used to operate on the job –launch command line before the command is
launched. LAUNCH specifies that the job is to be launched, with any specified
parameters added to the job –launch command. HOLD indicates that a manual
hold is placed on the job that must be released by system management before the
job can execute. DENY specifies that the job is to be rejected for launch, and will
print the error message specified to stderr.

The special actions for the conclusion selector are: ABORT, FAIL, ERR, WARN,
OK. These correspond to the state that will be assigned to the job for its
completion.

 43

Launch Rules:

SECTION sectionname [-shell shellname]
BEGIN
.
.
.
END

The Launch Rules are simply shell scripts that are executed after any selector that
references it as a target is set to true. A launch rule will be executed a maximum of one
time for any given job.

 44

JCS - jcsh

Notes:

Include base preprocessor into jcsh.
[expr] defines expression to be evaluated. Can be changed through environment variables
EXPRBEGIN, EXPREND and EXPRESCAPE.
Maybe add custom modules for expression evaluators (similar to Apache modules).
.jcrc file for startup options.

Commands

:autocont {on|off}

Sets implied continue for every command in the job

:alias cmd,cmdname [$nnn|text[...]]

:cierror {nnn|ERROR|WARN|FAIL|OK}

Sets a job’s execution state.

:continue

Continue job even if following job command fails.

:eoj [-nowait] [nnn|ERROR|WARN|FAIL|OK|cmd]

Specifies End of Jobstream. –nowait kills any executing background jobs.

:goto label

does an unconditional transfer to a label.

:jobcard jobname[,user[,group]] [job_modifier[…]

Defines the job card for a job. If provided, must be the first line in a job file.

:label labelname

Provides a label location from which a job can be restarted or to which control can be
transferred.

 45

:try

.

.

.

[:recover [condition]]

.

.

.

:endtry

Sets up a try/recover block. First, the try block is executed. At the end of the try block (or
when it errors out), if the cierror >= ERROR, the first true recover block is executed.

:when condition
do
.
.
.
done

 46

Base Preprocessor Expressions

chr nnn – Returns ASCII equivalent character.

date [+|-]nnn[.interval[.calendar][{+|-}...][;format] – date calculation displayed in a given
format. Default format controlled by environment variable NLSDATEFMT.

do cmd – executes cmd while preprocessing input

for parmname%scope in list

do

.

.

.
done - for loop inclusion

if cmd
.
.
.

else

.

.

.
fi - sets up conditional include blocks

include filename[,recurse] – includes contents of filename into stream.

my {user|usernum|group|groupnum|dir|shell|pty|source} – returns info about the user
who launched the job.

parmname[%scope] – returns value of a JCS variable.

while cmd

do

.

.

.
done - sets up include loops

 47

Schedule Modifiers

schedule_modifier for the above commands is of the form:

[-after jobname[,...]]
[-ask “question_text”][...]]
[-at timespec[.calendar]]
[-between timespec[.calendar], timespec[.calendar]]
[-deadline interval]
[-every interval
[-from interval]
[-to interval]
[-restart interval]]
[-except condition]
[-file [!][host:]filename[.state]][...]
[-hold “hold text”]
[-if condition]
[-in interval]
[-job jobname[.jobstate]]
 [-on calendarelement[.calendar][=value][,…]]
[-parm pname[%scope]{=|>|<|<>|>=|<=}{“value”|nnn|pname[%scope}[
...]
[-resource resourcespec[,...]]
[-sameday {on|off}]
[-unless condition]
[-until condition]
[-when condition]
[-whenever condition]
[-with jobname[:nnn][,…]]
[-without jobname[:nnn][,…]]

Where

state::={[{user|group|world}.]{ readable|writable|executable}|
exist|setuid|setgid|created {+|-}nnn|modified {+|-}nnn|accessed {+-}nnn}

resourcespec::=resource[:{num|jcsvar|all}]

resource::=resourcename[%scope]

and interval is of the form:
{date|[+/-]count[.duration[.calendar]]}[{+|-}...]
default duration is days, and default calendar is master.

date::=date_spec[.calendar]

 48

The format of date_spec is dependent upon the NLS calendar format
specification for the calendar invoked (default is
mm/dd/yyyy[@hh:mi[:ss]]])

For the format of scope in the above, refer to the scope command.

-after Specifies one or more jobs that must finish before this one can be
introduced. b)

-ask Specifies a pending reply that must be answered before the job can be

released. b)

-at Specifies a release time for a job. b)

-between Specifies a calendar window during which a job may be introduced. b)

-deadline Specifies a deadline for introducing a job. b)

-every Repeats a job at regular interval. If –from is specified, the –from interval

specifies the initial release interval for the job. If –to is specified, the –to
interval specifies the final release interval for the job. If –restart is
specified, the cycle is re-initialized after the –restart interval passes.

-except Overrides release of a job if a condition is true.

-file Specifies that a job is to be released when a given file reaches the

specified state. b)

-hold Places a manual hold on a job that must be cleared by system management

before the job will be permitted to execute. The text specified will be
shown as the reason the job is being held up. b)

-if Will release the job for execution only if the condition is true when the job

is ready to be released. If the condition specified is not true, the job is pre-
empted and flushed. b)

-in Releases a job after a given interval has passed. b)

-job Specifies that a job is to be released when another job reaches a given

state. If the job never reaches this state, the job to be released will be
flushed. b)

-on Specifies a calendar pattern that must be met in order to release the job. b)

-parm Specifies that a job is to be released based on the value of one or more JCS

parameters. b)

 49

-resource Specify resources that the job must have available before it can be

introduced. The resources are not tied to physical resources, but can be
thought of as chips allocated to a job from an available pool. b)

-sameday Determines whether to release a job now or defer until the next occurrence

of a time/date pattern (default is defer). a), b)

-unless Will release the job for execution only if the condition is false when the

job is ready to be released. If the condition specified is true, the job is pre-
empted and flushed.

-until Ends a cycle for a job when a condition is true. b)

-when Specifies a logical condition that must be met before a job can be released.

b)

-whenever Releases a job every time a condition is met. b)

-with Specifies jobs that must be running when the job is introduced. If a count

of nnn is specified, at least nnn copies of the job must be running. b)

-without Specifies jobs that must not be running when the job is introduced. If a

count of nnn is specified, no more than nnn-1 copies of the job can be
running. b)

 50

Job Modifiers

job_modifier for the above commands is of the form:

[-cpu cpulimit]
[-del]
[-dir dirname]
[-err cmd]
[-fail cmd]
[-finish cmd]
[-autoflush|-noflush]
[-host host[(condition)][,…]]
[-hostrule cmd]
[-init cmd]
[-inpri nnn]
[-jobnum jobfamily]
[-jobq queuename]
[-jobqrule cmd]
[-login [jobname,]user[.group]]
[-maxwait mins]
[-minload host[:weight],host[:weight][,…]]
[-need [host:]filename[,{keep|scrap}}
[-nice nicevalue]
[-preprocessor {cmd|/OFF/}]
[-{pri|batchq} {nnn}]
 {batchq}
[-setjcs varname=value
[-shell progname]
[-stderr cmd]
[-stdout cmd]
[-time timelimit]
[-type {critical}]
 {semi}
 {normal}
 {custom rule}
[-uses [hostname:]file[,[r][w][x]]

 [-validate {stdlist|stderr} cmd]
 [-virtual vmname [-token name [-expires expiration]]]
 [-warn cmd]

-cpu specifies cpu time limit in seconds for job. Sets job state to ERROR and

aborts when time expires.

-del Delete stderr/stdout after successful completion. b)

 51

-dir Sets the starting directory for the job. Default is user’s login directory. b)

-err Execute command if job ends in ERROR state.

-fail Execute command if job ends in FAIL state.

-finish Execute when job ends (prior to checking final state).

-host Submits the job on the first available host whose associated condition (if

specified) is true. If no conditions are specified on any hosts, it is
submitted on the host with the lowest load over the last 5 minutes. a), b)

-hostrule Submits the job to the host returned as output from cmd. a), b)

-init executes the command upon successful initiation of the job. b)

-inpri Specifies the job’s priority in the job queue (higher number is higher

priority, must be above fence for queue to be introduced). b)

-jobnum Specifies the smart job number sequence that will be used to generate this

job’s job number. a), b)

-jobq The name of the job queue that will hold this job. (Auto suspend if

switching an active job and destination queue is full).

-jobqrule The name of the job queue that will hold this job. The name of the job

queue will be returned by the output of cmd.

-login The name of the job, user and group that the job will run under. If the user

is neither specifically allowed nor forbidden from running the job under
that login, the user must provide the password for the login.

-maxwait The maximum number of minutes a job can wait before being canceled.

-minload submits the job on the available host whose load for the last 5 minutes was

lowest. If a weight factor is added, the load on that host is divided by that
weight factor. a), b)

-nice Sets a nice value for the job.

-preprocessor A command used to process the contents of the job file before it is actually

launched. Using /OFF/ as the preprocessor turns off all preprocessing a),
b)

-pri Sets the job’s execution priority. Can be numeric, or the name of a

scheduling queue.

 52

-shell Sets the startup shell for the job. Default is default shell for the job’s login

user. b)

-stderr Pipes stderr to command. Must be terminated by an escaped semicolon b)

-stdout Pipes stdout to command. Must be terminated by an escaped semicolon. b)

-time specifies wall time limit in seconds for job. Sets job state to ERROR and

aborts when time expires.

-type tells whether job is critical, semi-critical or non-critical. If specified as

type custom, then rule will be executed upon abort or EOJ, and the return
value of rule will be used as the job’s type. b)

-uses Specifies that the job must have local access to the file specified. If the file

is required for writing, it is transferred back after the job finishes.

-validate Specifies a command to be used to validate the job for successful

completion.

-virtual Specifies the virtual host that will be used to load balance the request. If a

token is specified, that token is used to specify a job persistence target for
future jobs that must exit on the same target machine as this job. For
example, suppose job A is assigned to virtual host VIRTUAL1 made up of
hosts X, Y and Z. Job A has a token of MYTOKEN attached to it. If job A
is assigned to host Y for execution, and at some point later job B is
assigned to virtual host VIRTUAL1, if it also has the token MYTOKEN
attached to it, it will also be assigned to host Y for execution, as will any
job with the token MYTOKEN attached to it, until the token MYTOKEN
expires. Tokens only expire when a job with a token specifies an
expiration for its token, and the expiration becomes true. Each succeeding
job that has an expiration for a token will overwrite the current expiration
for the token with its own expiration.

-warn Execute command if job ends in WARN state.

Notes:

a) Cannot be changed once job is launched
b) Cannot be changed once job is introduced
c) May be repeated.

 53

Library Routines

jobinfo({jsid} , {nnn })
 {jobname}, {varname }

{jobnumber}, {mnemonic}
{filename}

Num. Mnemonic Return Type Description

0 EXISTS Boolean Returns TRUE if the job exists on the system, returns
false otherwise.

1 CIPID Integer PID for job master process

100 JSID Integer Job Number

101 JOBNUM String Job Number

102 LOGIN String Returns the logon name in the form:
[jobname,]user.group

103 USERID Integer User ID number for job.

104 USER String User Name

105 GROUPID Integer Group ID number for job

106 GROUP String Returns the Job/Session's current logon group.

110 JOBNAME String Returns Job Name

115 SHELL String Job’s shell on startup.

116 DIR String Starting directory

117 JOBFILE String Name of the file used as source for this job

118 DINTRO String Returns the introduction date for the Job in the form:
"DD-MTH-YYYY HH:MI"

119 INTRO String Returns the introduction date for the Job in the form:
"YEARMMDDHHMI"

120 IINTRO Integer Returns the introduction date for the Job as offset
from 1/1/1970

121 STREAMEDBY String User who launched this job

122 STDIN String Returns filename of $STDIN for the Job

123 STDLIST String Returns filename of $STDLIST for Job

124 STDERR String Returns filename of stderr for Job

125 JOBSTEP String Returns the current job step for the job

126 JOBS Integer Returns the number of active jobs.

127 INPRI Integer Job input priority

129 DLAUNCHED String Returns the launch date for the Job in the form: "DD-
MTH-YYYY HH:MI"

130 LAUNCHED String Returns the launch date for the Job in the form:
"YEARMMDDHHMI"

131 ILAUNCHED Integer Returns the introduction date for the Job as offset
from 1/1/1970

134 DEFERRED Boolean Returns TRUE if job is deferred, false otherwise

136 HOLD Integer Returns TRUE if the original job is on hold, false
otherwise

138 WALLTIME Integer The Wall time limit (in minutes) for the Job

139 CPULIMIT Integer The CPU limit established for the Job

140 STATE String The general state category for the job (EXEC, SUSP,
SCHED or EOJ)

141 SUBSTATE String The current Job state (EXEC, SUSP, WAIT, INTRO,

 54

HOLD, OK, CANCEL, ABORT, RESOURCE,
RUNBOOK, LOCKED, ERR, WARN, FAIL,
VERIFY, EVAL or SCHED)

145 DELETESTDLIST Boolean Returns TRUE if STDLIST=DELETE, false
otherwise

148 ERRCMD String Command to execute if job ends in ERR Status.

149 FAILCMD String Command to execute if job ends in FAIL Status.

150 FINISHCMD String Command to execute if job validates successfully.

151 INITCMD String Command to execute when job is introduced, but
before it begins executing.

152 VALIDATECMD String Command to execute if job ends in OK Status.

153 WARNCMD String Command to execute if job ends in WARN status.

154 AUTOFLUSH Boolean Returns TRUE if job is set to automatically flush
from queue upon abend, FALSE otherwise.

155 MAXWAIT Integer Maximum number of minutes job can remain in
WAIT state before being flushed.

156 NICE Integer Nice value for job.

157 PREPROCESSOR String Command used to pre-process job template file in
order to generate final job file.

158 SETJCS String List of JCS variables set prior to launching job.

159 CRITICAL String Returns “CRITICAL” for critical job, “SEMI” for
semi-critical job, “NORMAL” for normal
importance, “NONCRITICAL” for non-critical job,
and the rule to be executed for a variable criticality
job.

200 JOBQ Integer Jobqueue to which job belongs.

201 JOBLIMIT Integer System job limit

202 JOBQLIMIT Integer Job limit for this job’s jobqueue.

203 JOBFENCE Integer Current system jobfence

204 JOBQFENCE Integer Jobfence for this job’s jobqueue.

399 RESOURCES String List of resources for this job.

500 JOBFAMILY String Returns the name of the job number family to which
this job belongs.

899 DEPENDENCIES String Returns list of pending dependencies for job.

901 NUMABORT Integer Number of jobs fitting pattern specified that are in
ABORT state

902 NUMACTIVE Integer Number of jobs fitting pattern specified that are
logged on

903 NUMCANCEL Integer Number of jobs fitting pattern specified that are in
CANCEL state

904 NUMERROR Integer Number of jobs fitting pattern specified that are in
ERROR state

905 NUMEXEC Integer Number of jobs fitting pattern specified that are in
EXEC state

906 NUMFAIL Integer Number of jobs fitting pattern specified that are in
FAIL state

907 NUMFINISH Integer Number of jobs fitting pattern specified that are in
FINISH state

908 NUMHOLD Integer Number of jobs fitting pattern specified that are in
HOLD state

909 NUMINTRO Integer Number of jobs fitting pattern specified that are in
INTRO state

 55

910 NUMRESOURCE Integer Number of jobs fitting pattern specified that are in
RESOURCE wait state

911 NUMSCHED Integer Number of jobs fitting pattern specified that are in
SCHED state

912 NUMSUSP Integer Number of jobs fitting pattern specified that are in
SUSP state

913 NUMVERIFY Integer Number of jobs being verified for successful
completion.

914 NUMWAIT Integer Number of jobs fitting pattern that are in WAIT state

915 NUMWARN Integer Number of jobs fitting pattern specified that are in
WARN state

999 TOTAL Integer Number of jobs fitting pattern

jobnum(spec) – returns job numbers of all jobs fitting spec.

 56

jobqinfo(queuename,parmnum) – returns info about a jobqueue.

Num. Mnemonic Return Type Description

0 EXISTS Boolean Returns TRUE if the job queue exists on the system,
returns false otherwise.

200 JOBQ Integer Jobqueue name.

201 JOBLIMIT Integer System job limit

202 JOBQLIMIT Integer Job limit for this jobqueue.

203 JOBFENCE Integer Current jobfence

204 JOBQFENCE Integer Jobfence for this jobqueue.

205 JOBS Integer Returns the number of active jobs.

206 QSTATE String The current Jobqueue state (OPEN, CLOSED,
SUSPEND, LOAD or ERROR).

207 RULE String Rule for job introduction order

212 MAXLOAD Double Maximum system load before queue shuts down.

213 PARENT String Parent queue for this jobqueue.

214 MINSLICE Integer Minimum CPU slice (0.1%) process must get

215 MAXSLICE Integer Maximum CPU slice (0.1%) process may get

216 NICE Integer Nice value for each job in the queue

217 INCR Integer Priority change for jobs outside slice limits

901 NUMABORT Integer Number of jobs in the jobqueue that are in ABORT
state

902 NUMACTIVE Integer Number of jobs in the jobqueue that are logged on

903 NUMCANCEL Integer Number of jobs in the jobqueue that are in
CANCEL state

904 NUMERROR Integer Number of jobs in the jobqueue that are in ERROR
state

905 NUMEXEC Integer Number of jobs in the jobqueue that are in EXEC
state

906 NUMFAIL Integer Number of jobs in the jobqueue that are in FAIL
state

907 NUMFINISH Integer Number of jobs in the jobqueue that are in FINISH
state

908 NUMHOLD Integer Number of jobs in the jobqueue that are in HOLD
state

909 NUMINTRO Integer Number of jobs in the jobqueue that are in INTRO
state

910 NUMRESOURCE Integer Number of jobs in the jobqueue that are in
RESOURCE wait state

911 NUMSCHED Integer Number of jobs in the jobqueue that are in SCHED
state

912 NUMSUSP Integer Number of jobs in the jobqueue that are in SUSP
state

913 NUMVERIFY Integer Number of jobs in the jobqueue being verified for
successful completion.

914 NUMWAIT Integer Number of jobs in the jobqueue that are in WAIT
state

915 NUMWARN Integer Number of jobs in the jobqueue that are in WARN
state

999 TOTAL Integer Total Jobs assigned to the jobqueue

 57

replyinfo ({JOBNUM, jobnum}, {nnn })
 {PID, nnn }, {jcwname }
 {LOGON, [sname,]user.grp}, {mnemonic }
 {PROCESS, filename},
 {STREAM, streamfile},
 {REPLYID, replynum},
 {HOST, hostname},
 {VIRTUAL, vmname},

The information returned by replyinfo (by request number/mnemonic) is as follows:

Num. Mnemonic Return Type Description

0 EXISTS Boolean Reply exists for user.

1 PID String PID of process requesting REPLY.

100 JSID Integer Job Number for job requesting REPLY.

101 JOBNUM String Job number of job requesting REPLY.

102 LOGIN String Job card of job requesting REPLY in form [sess,]user.grp

103 USERID Integer User ID number requesting reply.

104 USER String User name requesting reply.

105 GROUPID Integer Group ID number requesting reply.

106 GROUP String Group name requesting reply.

110 JOBNAME String Job card session name requesting reply.

400 REPLYID Integer ID of pending reply.

404 TEXT String Text of pending REPLY.

405 TIME String 24 hour time REPLY was posted.

406 TIMEOUT Integer Time in minutes after REPLY was posted that it will timeout.

407 ITIME Integer Time REPLY was posted in seconds offset from 1/1/1970.

408 DURATION Integer Duration in minutes reply has been pending.

410 PROCESS String Name of process requesting REPLY.

411 MINLEN Integer Minimum length in characters for response.

412 MAXLEN Integer Maximum length in characters for response.

413 EDIT String Regex that will be used to check validity of response.

414 DEFAULT String Response that will be issued if REPLY times out.

415 HOST String Host name where reply will show.

416 ECHO Boolean Determines whether ASK command will echo to stderr.

700 VIRTUAL String Virtual host whose targets will show the reply.

999 TOTAL Integer Total number of outstanding REPLY's fitting requested pattern

 58

resinfo(resource,parmnum) – returns info about a resource.

Num. Mnemonic Return Type Description

0 EXISTS Boolean Resource exists

17 RULE String Allocation rule for Resource

300 RESOURCE String Resource name

301 LEVEL String LOCAL, GLOBAL or SHARED

302 SUBCLASS Array Name of job number family, jobqueue, user, etc. owning
resource.

303 DESC String Description of the Resource

304 LIMIT Integer Total number of the Resource

305 MIN Integer Minimum priority of a process requesting a Resource

306 MAX Integer Maximum priority of a process requesting a Resource

307 AVAIL Integer Number currently free for allocation

309 SORT String Sort order of processes requesting Resource

310 USED Integer Number currently in use

311 USERS Array List of PID, JSID and COUNT using a resource

312 WAITING Array List of PID, JSID and COUNT waiting for a resource

resuser(resource,pid,parmnum) – returns info about a user of a resource.

Num. Mnemonic Return Type Description

0 EXISTS Boolean Resource exists

1 PID Integer PID for job master process

2 JSID Integer Job Number

3 JOBNUM String Job Number

4 LOGIN String Returns the logon name in the form: [jobname,]user.group

5 USERID Integer User ID number for job.

6 USER String User Name

7 GROUPID Integer Group ID number for job

8 GROUP String Returns the Job/Session's current logon group.

9 JOBNAME String Returns Job Name

17 RULE String Allocation rule for Resource

300 RESOURCE String Resource name

301 LEVEL String LOCAL, GLOBAL or SHARED

302 SHARES Array Hosts sharing the resource

303 DESC String Description of the Resource

304 LIMIT Integer Total number of the Resource

305 MIN Integer Minimum priority of a process requesting a Resource

306 MAX Integer Maximum priority of a process requesting a Resource

307 AVAIL Integer Number currently free for allocation

309 SORT String Sort order of processes requesting Resource

310 USED Integer Number currently in use

311 USERS Array List of PID, JSID and COUNT using a resource

312 WAITING Array List of PID, JSID and COUNT waiting for a resource

getvar(parmname,scope) – returns value of a JCS variable.

setvar(parmname,scope,value[,indirect]) – sets a value for a JCS variable.

finfo(filename,parmnum) – returns info about a file.

 59

duration(units,from[,to[,calendarname]]) – returns the number of temporal units between
two dates.

iduration(units,from[,to[,calendarname]]) – returns the integral number of temporal units
between two dates.

